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1.        

The Euler–Bernoulli beam equation

m
12

1t2 w(x, t)+EI
14

1x4 w(x, t)= f(x, t), 0Q xQ 1, tq 0, (1)

is a mathematical model of basic importance in structural engineering because machinery,
bridges and buildings often have components which can be simply modelled as beams. In
equation (1), the beam length has been normalized to 1. The external force f(x, t) in
equation (1) will excite resonant vibrations which are of major concern in structural
engineering design. Resonance can be determined by an eigenvalue problem corresponding
to the time-reduced form of equation (1) subject to properly given boundary conditions.
To fix ideas, assume throughout that the Euler–Bernoulli beam is clamped at the left end:

w(0, t)=wx(0, t)=0, te 0. (2)

At the right end x=1, one of four types of boundary conditions normally occurs:

clamped (C), w(1, t)=wx(1, t)=0, te 0;

simply supported (S), w(1, t)=wxx(1, t)=0, te 0;

roller-supported (R), wx(1, t)=wxxx(1, t)=0, te 0;

free (F), wxx(1, t)=wxxx(1, t)=0, te 0. (3)

The time-reduced form of equation (1), under the assumption that there is no external
force, is obtained by letting w(x, t)=f(x) e−ik2t (and f(x, t)0 0) in equation (1), giving

f(4)(x)− k	 4f(x)=0, 0Q xQ 1, (4)

where

k	 = ak, a0 (m/EI)1/4. (5)

As stipulated in equations (2) and (3), the boundary conditions for f consist of one of
the following four sets:
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(C–C) f(0)=f'(0)=f(1)=f'(1)=0; (C–S) f(0)=f'(0)=f(1)=f0(1)=0;

(C–R) f(0)=f'(0)=f'(1)=f1(1)=0; (C–F) f(0)=f'(0)=f0(1)=f1(1)=0.

(6)

The eigenvalue problem, therefore, is to determine all values of k	 4 which satisfy equation
(4), subject to the appropriate set of boundary conditions given in equation (6).

It is well known that the eigenvalue problem (4) and (6) does not have any closed form
solutions. We first recall the standard, straightforward approach to determine k	 that is
familiar: write

f(x)=A e−ik	 x +B eik	 x +C e−k	 x +D ek	 x, (7)

and substitute equation (7) into, say, the fourth set (C–F) of boundary conditions in
equation (6), yielding

A+B+C+D=0, −ik	 A+ik	 B− k	 C + k	 D=0,

−k	 2 e−ik	 A− k	 2 eik	 B+ k	 2 e−k	 C+ k	 2 ek	 D=0,

ik	 3 e−ik	 A−ik	 3 eik	 B− k	 3 e−k	 C+ k	 3 ek	 D=0. (8)

Therefore (after a slight simplification of equation (8)) k	 satisfies the transcendental
equation determined by the zero determinant condition

1 1 1 1

−i i −1 1

e−ik	 eik	 −e−k	 −ek	 =0. (9)

−i e−ik	 i eik	 e−k	 −ek	

Actual estimation of k	 from equation (9) is rather tedious, because the expansion of the
determinant in equation (9) leads to 24 terms, each of which must be carefully scrutinized
before any are discarded in order to do the asymptotic analysis (see, e.g., reference [1]).

Traditionally, engineers have been using Ritz and/or Galerkin finite element methods
(FEM) to compute such eigenvalues. Although the computed data get more accurate when
more and more basis (shape) functions are used, such eigenvalue data are of lower order.
One does not obtain analytical insights from FEM as to what happens in the high frequency
range, since FEM are purely numerical in nature. To obtain analytical insights, one needs
to resort to a different, subtler way: the wave propagation method (WPM). It was first
developed by Keller and Rubinow [2] for estimating the eigenvalues of the Laplacian D,
a second order multi-dimensional partial differential operator. In Chen and Zhou [3], and
Chen, Coleman and Zhou [4], the method was first adapted for the fourth order problem
(4) in one space dimension, and later for the fourth order biharmonic operator D2 in two
space dimensions. To make this note sufficiently self-contained, let us provide a quick
review of the WPM for equation (1) as in reference [3]. Consider f(x, t)0 0 in equation
(1) subject to the boundary conditions (C–F), i.e., the cantilever case:

12

1t2 w(x, t)+ a−4 14

1x4 w(x, t)=0, 0Q xQ 1, tq 0, (cf., equation (5) for a),

w(0, t)=wx(0, t)=wxx(1, t)=wxxx(1, t)=0, tq 0. (10)

We write the solution v of equation (10) as a linear combination of four waves:
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w(x, t)=A e−ik(ax+ kt) +B eik(ax− kt) +C eik(iax− kt) +D e−ik[ia(x−1)+ kt] , (11)
zXXcXXv zXXcXXv zXXcXXv zXXXXcXXXXv

Wave I Wave II Wave III Wave IV

where k is stipulated to be positive. Each of these waves is dispersive. Wave I travels
leftward and Wave II travels rightward, while Waves III and IV are, respectively,
evanescent waves near the left endpoint x=0 and the right endpoint x=1. Now, we first
focus our attention on the boundary conditions at the left endpoint w(0, t)=wx(0, t)=0.
Wave II impinges toward x=0 and is reflected. After reflection, it becomes Wave I plus
the evanescent Wave III. The total field is thus

A e−ik(ax− kt) +B eik(ax− kt) +C eik(iax− kt). (12)

In comparing equation (12) with equation (11), we note that Wave IV has been dropped
in equation (12) because it is evanescent near x=1 and is thus negligible near x=0.
Substituting equation (12) into the clamped boundary conditions at x=0, we obtain

A e−ik2t +B e−ik2t +C e−ik2t =0, −ik	 A e−ik2t +ik	 B e−ik2t − k	 C e−ik2t =0, (13)

i.e.,

A+B+C=0, −iA+iB−C=0, (14)

which gives the amplitudes of the reflected waves

A=−iB, C=iB, (15)

in terms of the incoming waves. We now repeat the same argument at the right endpoint
x=1. The incoming wave is Wave I, A e−ik(ax+ kt), while the reflected waves are Waves II
and IV. Therefore, the total field is

A e−ik(ax+ kt) +B e−ik(ax− kt) +D e−ik[ia(x−1)+ kt)]. (16)

Substituting equation (16) (as w) into wxx(1, t)=wxxx(1, t)=0, we obtain

−k	 2 e−ik	 A e−ik2t − k	 2 eik	 B e−ik2t + k	 2D e−ik2t =0,

ik	 3 e−ik	 A e−ik2t −ik	 3 eik	 B e−ik2t + k	 3D e−ik2t =0, (17)

i.e.,

e−ik	 A+eik	 B−D=0, −i e−ik	 A+i eik	 B−D=0, (18)

which gives the amplitudes of the reflected waves

B=−i e−2ik	 A, D=(1− i) e−ik	 A, (19)

in terms of the amplitude A of the incoming wave.
Since Waves I and II are the dominant waves propagating back and forth on the beam,

an eigenmode shape forms when the reflected wave does not have any phase difference with
the incoming wave; i.e., when resonance occurs. We need only pay attention to the
relationships between A and B in equations (15) and (19); we obtain

B=−i e−2ik	 A=−i e−2ik	 (−iB)=−e−2ik	 B.

This is possible if and only if

−2ik	 =−i(2n+1)p, n=a positive integer.
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Therefore

k	 =
(2n+1)p

2
, n=a positive integer, (20)

and the eigenvalue problem

f(4)(x)− lf(x)=0, 0Q xQ 1, f(0)=f'(0)=f(1)=f'(1)=0, (21)

has non-trivial solutions f when

l= k	 4 1$02n+1
2 1p%

4

, n=0, 1, 2, . . . ,

or

zl= k	 2 1$02n+1
2 1p%

2

, n=0, 1, 2, . . . . (22)

As mentioned earlier, exact values of l in equation (21) are not known. However, they
can be computed by a high accuracy Legendre-tau spectral method (see Gottlieb and
Orszag [5], and Chen and Zhou [6, §3.3]); see the left column of Table 1, where zl are
listed. The values of zl obtained from WPM in equation (22) are listed in the second
column of Table 1. These values agree closely with data published elsewhere in the
literature; cf., e.g., references [7] and [8]. The reader can easily see that WPM gives highly
accurate eigenvalues for l in equation (21) even at medium to low frequencies. However,
for the lowest few eigenvalues, the deviations are larger. This is the nature of using an
asymptotic method such as WPM. From an applications point of view, the lowest few
eigenvalues are actually the most important ones, because the corresponding low order
eigenmodes manifest prominently in the vibration of a beam. The crux of this note,
therefore, is to develop a formal perturbation procedure which can estimate the accuracy
of these lower order eigenvalues to any degree of desired accuracy. This procedure is given
in the following section.

T 1

The eigenfrequencies k2 =zl of the cantilever beam,
equation (21). The left column lists the nearly exact values
of zl computed by the Legendre-tau (L-T) spectral
method, agreeing with those values found elsewhere in the
literature, while the right column lists zl obtained by

WPM in equation (22)

n�zln L-T WPM

1 3·516015 2·467401
2 22·034492 22·206610
3 61·697214 61·685028
4 120·901916 120·902654
5 199·859530 199·859489
6 298·555531 298·555533
7 416·990786 416·990786
8 555·165248 555·165248
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2.          

 

We consider the equation (4) subject to the general combination of any set of boundary
conditions (6). Without loss of generality, we let a=1 in equation (5) so that k	 = k, and
k2 is the eigenfrequency because of the separation of variables w(x, t)=f(x) e−ik2t. Write

f(x)=A e−ikx +B eikx +C e−kx +D ek(x−1), 0Q xQ 1. (23)

Note that equation (23) is the time-reduced form of equation (11). Substituting equation
(23) into each set of the boundary conditions (6) with slight simplification, we obtain a
general matrix equation

1 1 1 e−k A A 0

−i i −1 e−k B B 0
G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l
a1 e−ik a2 eik e−k a3 C

0M
C

=
0

, (24)

b1 e−ik b2 eik e−k b3 D D 0

where aj and bj are constants depending on which set of the boundary conditions is under
consideration:

(C–C), a1 = a2 = a3 =1, b1 = i, b2 =−i, b3 =−1;

(C–S), a1 = a2 = a3 =1, b1 = b2 =−1, b3 =1;

(C–R), a1 = i, a2 =−i, a3 =−1, b1 =−i, b2 = i, b3 =−1;

(C–F), a1 = a2 =−1, a3 =1, b1 =−i, b2 = i, b3 =−1. (25)

Therefore k is determined by

det M=0.

Let us define

1 1 1 o

−i i −1 o
G
G

G

K

k

G
G

G

L

l

Mo = a1 e−ik a2 eik o a3
. (26)

b1 e−ik b2 eik o b3

Note that when o=0, det M0 =0 corresponds to the WPM, as can be easily seen from
equations (14) and (18), for the (C–F) set of the boundary conditions (25).

We again use the cantilever case (C–F) to illustrate our perturbation approach; the
remaining cases proceed similarly. Thus, using the fourth set of data in equation (25) for
aj and bj , and writing

k= k0 + k1o+ k2o
2 +O(o3), (27)

we substitute equation (27) into equation (26), obtaining

det Mo =−2i(eik0 + e−ik0)+2[−4i+ k1(eik0 − e−ik0)]o

+[i(k2
1 −2)(eik0 + e−ik0)+2k2(eik0 − e−ik0)]o2 +O(o3), (28)
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T 2

A comparison of the lowest six eigenfrequencies k2 for the clamped–clamped beam, as
estimated by the Legendre-tau method (L-T), the wave propagation method (WPM), and the
iterated approximants (36). In this and the subsequent tables, ‘‘*’’ denotes numerical values

which do not show further improvement of accuracy, and thus are omitted

WPM
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

L-T k2
0 [k(1)]2 [k(2)]2 [k(3)]2 [k(4)]2

22·373285 22·206610 22·376264 22·373237 22·373291 22·373290
61·672823 61·685028 61·672832 61·672823 61·672823 *

120·903392 120·902654 120·903392 120·903392 * *
199·859448 199·859489 199·859448 199·859448 * *
298·555535 298·555533 298·555535 298·555535 * *
416·990786 416·990786 416·990786 * * *

T 3

A comparison of the lowest five eigenfrequencies k2 for the clamped–simply supported beam,
as estimated by the Legendre-tau method (L-T), the wave propagation method (WPM) and

the iterated approximants (37)

WPM
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

L-T k2
0 [k(1)]2 [k(3)]2 [k(3)]2

15·418206 15·421257 15·418208 15·418206 15·418206
49·964862 49·964872 49·964862 49·964862 *

104·247696 104·247696 104·247696 * *
178·269729 178·269729 178·269729 * *
272·030971 272·030971 272·030971 * *

where we have used the approximation that

e2i(k0 + k1o+ k2o
2) = e2ik0$12 ik1o+0−k2

1

2
2 k21o2 +O(o3)%.

Setting the coefficients of different powers of o to zero in equation (28), we obtain

o0: eik0 + e−ik0 =0; (29)

o1: −4i+ k1(eik0 − e−ik0)=0; (30)

o2: i(k2
1 −2)(eik0 + e−ik0)+2k2(eik0 − e−ik0)=0; (31)

···

Equation (29) leads to

k0 =
(2n+1)p

2
, n=0, 1, 2, . . . . (32)

This result is consistent with equation (20) obtained from WPM. Using k0 from equation



   702

(32) in equation (30), we obtain

k1 =−2i eik0 =2×(−1)n, n=0, 1, 2, . . . .

We can obtain k2 similarly from equation (31). However, as it turns out, in this case we
do not need to actually find k2.

Repeating the above argument for the remaining cases, we obtain

(C–C), k0 =
(2n+1)p

2
, k1 =2×(−1)n+1, n=0, 1, 2, . . . ;

(C–S), k0 =
(4n+1)p

4
, k1 =0, k2 =−1, n=0, 1, 2, . . . ;

(C–R), k0 =
(4n−1)p

4
, k1 =0, k2 =1, n=1, 2, 3, . . . .

Note that in the cases (C–S) and (C–R), the correction for k is of the second order in o:

k= k0 + k2o
2 +O(o3). (33)

T 4

A comparison of the lowest five eigenfrequencies k2 for the clamped–roller-supported beam,
as estimated by the Legendre-tau method (L-T), the wave propagation method (WPM) and

the iterated approximants (37)

WPM
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

L-T k2
0 [k(1)]2 [k(2)]2 [k(3)]2 [k(4)]2

5·593321 5·551652 5·594066 5·593309 5·593322 5·593322
30·225848 30·225663 30·225848 30·225848 * *
74·638884 74·638883 74·638884 74·638884 * *

138·791312 138·791312 138·791312 * * *
222·682949 222·682949 222·682949 * * *

T 5

A comparison of the lowest eight eigenfrequencies for the clamped–free beam, as estimated
by the Legendre-tau method (L-T), the wave propagation method (WPM) and the iterated

approximants (36). The first two columns here are the same as those in Table 1

WPM
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

L-T k2
0 [k(1)]2 [k(2)]2 [k(3)]2 [k(4)]2

3·516015 2·467401 3·946403 3·404507 3·560036 3·511526
22·034492 22·206610 22·037602 22·034544 22·034488 22·034487
61·697214 61·685028 61·697224 61·697214 61·697214 *

120·901916 120·902654 120·901916 120·901916 * *
199·859530 199·859489 199·859530 199·859530 * *
298·555531 298·555533 298·555531 298·555531 * *
416·990786 416·990786 416·990786 * * *
555·165248 555·165248 555·165248 * * *
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Now, we return and continue with the cantilever case (C–F) at hand. To improve the
estimate of k, we first set

o= o0 = e−k0, (34)

the choice of which is obvious by comparing the matrices M and Mo in equations (24) and
(26). This gives us a first improved value of k:

k(1) 0 k0 + k1o0 =
(2n+1)p

2
+2×(−1)n exp0−(2n+1)p

2 1, n=0, 1, 2, . . . . (35)

Next, we can again improve k(1) by updating our choice of o, from equation (34) to

o= o1 = exp(−k0 − k1o0),

and let

k(2) 0 k0 + k1o1.

This process can be continued recursively and indefinitely:

o0 = e−k0, o= oj =exp(−k0 − k1oj−1), k( j+1) = k0 + k1oj , j=1, 2, 3, . . . . (36)

(For the (C–S) and (C–R) cases when k1 =0 and equation (33) holds, the updating
procedure becomes

o0 = e−k0, oj =exp(−k0 − k2o
2
j−1), k( j+1) = k0 + k2o

2
j , j=1, 2, 3, . . . . (37)

The numerical results of applying the above to the four cases C–C, C–S, C–R and C–F,
along with those (nearly exact values) obtained using a Legendre-tau spectral
approximation, are given in Tables 2–5, respectively. We see that, in all four cases, we get
strong agreement for the lowest few eigenfrequencies after only a few updates. (Of course,
if the eigenfrequencies are high, then WPM already supplies very accurate estimates, and
no improvements are needed at all.) We again mention that for each case in Tables 2–5,
our Legendre-tau calculated data agree closely with the values obtained elsewhere; cf.,
references [7, 8].

As a final conclusion, we state that WPM, when combined with the perturbation
procedure as developed in this work, enables us to capture the entire (low, medium and
high) range of the spectrum of vibration of an Euler–Bernoulli beam, both asymptotically
and numerically. The amount of numerical work required is minimal. The methodology
also applies to other more complicated situations such as a flexible single-link robotic
manipulator with a payload attached at an endpoint; see a new paper by the second author
[9].
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